Search Question Papers

Manual Testing Interview Questions and Answers

Manual Testing Interview Questions and Answers

What makes a good test engineer?
A good test engineer has a 'test to break' attitude, an ability to take the point of view of the customer, a strong desire for quality, and an attention to detail. Tact and diplomacy are useful in maintaining a cooperative relationship with developers, and an ability to communicate with both technical (developers) and non-technical (customers, management) people is useful. Previous software development experience can be helpful as it provides a deeper understanding of the software development process, gives the tester an appreciation for the developers' point of view, and reduce the learning curve in automated test tool programming. Judgment skills are needed to assess high-risk areas of an application on which to focus testing efforts when time is limited.

What makes a good Software QA engineer?
The same qualities a good tester has are useful for a QA engineer. Additionally, they must be able to understand the entire software development process and how it can fit into the business approach and goals of the organization. Communication skills and the ability to understand various sides of issues are important. In organizations in the early stages of implementing QA processes, patience and diplomacy are especially needed. An ability to find problems as well as to see 'what's missing' is important for inspections and reviews.

What makes a good QA or Test manager?
A good QA, test, or QA/Test(combined) manager should:
• be familiar with the software development process
• be able to maintain enthusiasm of their team and promote a positive atmosphere, despite
• what is a somewhat 'negative' process (e.g., looking for or preventing problems)
• be able to promote teamwork to increase productivity
• be able to promote cooperation between software, test, and QA engineers
• have the diplomatic skills needed to promote improvements in QA processes
• have the ability to withstand pressures and say 'no' to other managers when quality is insufficient or QA processes are not being adhered to
• have people judgement skills for hiring and keeping skilled personnel
• be able to communicate with technical and non-technical people, engineers, managers, and customers.
• be able to run meetings and keep them focused

What's the role of documentation in QA?
Critical. (Note that documentation can be electronic, not necessarily paper.) QA practices should be documented such that they are repeatable. Specifications, designs, business rules, inspection reports, configurations, code changes, test plans, test cases, bug reports, user manuals, etc. should all be documented. There should ideally be a system for easily finding and obtaining documents and determining what documentation will have a particular piece of information. Change management for documentation should be used if possible.

What's the big deal about 'requirements'?

One of the most reliable methods of insuring problems, or failure, in a complex software project is to have poorly documented requirements specifications. Requirements are the details describing an application's externally-perceived functionality and properties. Requirements should be clear, complete, reasonably detailed, cohesive, attainable, and testable. A non-testable requirement would be, for example, 'user-friendly' (too subjective). A testable requirement would be something like 'the user must enter their previously-assigned password to access the application'. Determining and organizing requirements details in a useful and efficient way can be a difficult effort; different methods are available depending on the particular project. Many books are available that describe various approaches to this task. (See the Bookstore section's 'Software Requirements Engineering' category for books on Software Requirements.)
Care should be taken to involve ALL of a project's significant 'customers' in the requirements process. 'Customers' could be in-house personnel or out, and could include end-users, customer acceptance testers, customer contract officers, customer management, future software maintenance engineers, salespeople, etc. Anyone who could later derail the project if their expectations aren't met should be included if possible.
Organizations vary considerably in their handling of requirements specifications. Ideally, the requirements are spelled out in a document with statements such as 'The product shall.....'. 'Design' specifications should not be confused with 'requirements'; design specifications should be traceable back to the requirements.
In some organizations requirements may end up in high level project plans, functional specification documents, in design documents, or in other documents at various levels of detail. No matter what they are called, some type of documentation with detailed requirements will be needed by testers in order to properly plan and execute tests. Without such documentation, there will be no clear-cut way to determine if a software application is performing correctly.
'Agile' methods such as XP use methods requiring close interaction and cooperation between programmers and customers/end-users to iteratively develop requirements. The programmer uses 'Test first' development to first create automated unit testing code, which essentially embodies the requirements.

What steps are needed to develop and run software tests?
The following are some of the steps to consider:
• Obtain requirements, functional design, and internal design specifications and other necessary documents
• Obtain budget and schedule requirements
• Determine project-related personnel and their responsibilities, reporting requirements, required standards and processes (such as release processes, change processes, etc.)
• Identify application's higher-risk aspects, set priorities, and determine scope and limitations of tests
• Determine test approaches and methods - unit, integration, functional, system, load, usability tests, etc.
• Determine test environment requirements (hardware, software, communications, etc.)
• Determine testware requirements (record/playback tools, coverage analyzers, test tracking, problem/bug tracking, etc.)
• Determine test input data requirements
• Identify tasks, those responsible for tasks, and labor requirements
• Set schedule estimates, timelines, milestones
• Determine input equivalence classes, boundary value analyses, error classes
• Prepare test plan document and have needed reviews/approvals
• Write test cases
• Have needed reviews/inspections/approvals of test cases
• Prepare test environment and testware, obtain needed user manuals/reference documents/configuration guides/installation guides, set up test tracking processes, set up logging and archiving processes, set up or obtain test input data
• Obtain and install software releases
• Perform tests
• Evaluate and report results
• Track problems/bugs and fixes
• Retest as needed
• Maintain and update test plans, test cases, test environment, and testware through life cycle

What's a 'test plan'?
A software project test plan is a document that describes the objectives, scope, approach, and focus of a software testing effort. The process of preparing a test plan is a useful way to think through the efforts needed to validate the acceptability of a software product. The completed document will help people outside the test group understand the 'why' and 'how' of product validation. It should be thorough enough to be useful but not so thorough that no one outside the test group will read it. The following are some of the items that might be included in a test plan, depending on the particular project:
• Title
• Identification of software including version/release numbers
• Revision history of document including authors, dates, approvals
• Table of Contents
• Purpose of document, intended audience
• Objective of testing effort
• Software product overview
• Relevant related document list, such as requirements, design documents, other test plans, etc.
• Relevant standards or legal requirements
• Traceability requirements
• Relevant naming conventions and identifier conventions
• Overall software project organization and personnel/contact-info/responsibilties
• Test organization and personnel/contact-info/responsibilities
• Assumptions and dependencies
• Project risk analysis
• Testing priorities and focus
• Scope and limitations of testing
• Test outline - a decomposition of the test approach by test type, feature, functionality, process, system, module, etc. as applicable
• Outline of data input equivalence classes, boundary value analysis, error classes
• Test environment - hardware, operating systems, other required software, data configurations, interfaces to other systems
• Test environment validity analysis - differences between the test and production systems and their impact on test validity.
• Test environment setup and configuration issues
• Software migration processes
• Software CM processes
• Test data setup requirements
• Database setup requirements
• Outline of system-logging/error-logging/other capabilities, and tools such as screen capture software, that will be used to help describe and report bugs
• Discussion of any specialized software or hardware tools that will be used by testers to help track the cause or source of bugs
• Test automation - justification and overview
• Test tools to be used, including versions, patches, etc.
• Test script/test code maintenance processes and version control
• Problem tracking and resolution - tools and processes
• Project test metrics to be used
• Reporting requirements and testing deliverables
• Software entrance and exit criteria
• Initial sanity testing period and criteria
• Test suspension and restart criteria
• Personnel allocation
• Personnel pre-training needs
• Test site/location
• Outside test organizations to be utilized and their purpose, responsibilties, deliverables, contact persons, and coordination issues
• Relevant proprietary, classified, security, and licensing issues.
• Open issues
• Appendix - glossary, acronyms, etc.

What's a 'test case'?

• A test case is a document that describes an input, action, or event and an expected response, to determine if a feature of an application is working correctly. A test case should contain particulars such as test case identifier, test case name, objective, test conditions/setup, input data requirements, steps, and expected results.
• Note that the process of developing test cases can help find problems in the requirements or design of an application, since it requires completely thinking through the operation of the application. For this reason, it's useful to prepare test cases early in the development cycle if possible.

What should be done after a bug is found?
The bug needs to be communicated and assigned to developers that can fix it. After the problem is resolved, fixes should be re-tested, and determinations made regarding requirements for regression testing to check that fixes didn't create problems elsewhere. If a problem-tracking system is in place, it should encapsulate these processes. A variety of commercial problem-tracking/management software tools are available (see the 'Tools' section for web resources with listings of such tools). The following are items to consider in the tracking process:
• Complete information such that developers can understand the bug, get an idea of it's severity, and reproduce it if necessary.
• Bug identifier (number, ID, etc.)
• Current bug status (e.g., 'Released for Retest', 'New', etc.)
• The application name or identifier and version
• The function, module, feature, object, screen, etc. where the bug occurred
• Environment specifics, system, platform, relevant hardware specifics
• Test case name/number/identifier
• One-line bug description
• Full bug description
• Description of steps needed to reproduce the bug if not covered by a test case or if the developer doesn't have easy access to the test case/test script/test tool
• Names and/or descriptions of file/data/messages/etc. used in test
• File excerpts/error messages/log file excerpts/screen shots/test tool logs that would be helpful in finding the cause of the problem
• Severity estimate (a 5-level range such as 1-5 or 'critical'-to-'low' is common)
• Was the bug reproducible?
• Tester name
• Test date
• Bug reporting date
• Name of developer/group/organization the problem is assigned to
• Description of problem cause
• Description of fix
• Code section/file/module/class/method that was fixed
• Date of fix
• Application version that contains the fix
• Tester responsible for retest
• Retest date
• Retest results
• Regression testing requirements
• Tester responsible for regression tests
• Regression testing results
A reporting or tracking process should enable notification of appropriate personnel at various stages. For instance, testers need to know when retesting is needed, developers need to know when bugs are found and how to get the needed information, and reporting/summary capabilities are needed for managers.

LOAD RUNNER Interview Questions and Answers

LOAD RUNNER Interview Questions and Answers

Explain the Configuration of your systems?
The configuration of our systems refers to that of the client machines on which we run the Vusers. The configuration of any client machine includes its hardware settings, memory, operating system, software applications, development tools, etc. This system component configuration should match with the overall system configuration that would include the network infrastructure, the web server, the database server, and any other components that go with this larger system so as to achieve the load testing objectives.

How do you identify the performance bottlenecks?
Performance Bottlenecks can be detected by using monitors. These monitors might be application server monitors, web server monitors, database server monitors and network monitors. They help in finding out the troubled area in our scenario which causes increased response time. The measurements made are usually performance response time, throughput, hits/sec, network delay graphs, etc.

If web server, database and Network are all fine where could be the problem?
The problem could be in the system itself or in the application server or in the code written for the application.

How did you find web server related issues?
Using Web resource monitors we can find the performance of web servers. Using these monitors we can analyze throughput on the web server, number of hits per second that
occurred during scenario, the number of http responses per second, the number of downloaded pages per second.

How did you find database related issues?
By running “Database” monitor and help of “Data Resource Graph” we can find database related issues. E.g. You can specify the resource you want to measure on before running the controller and than you can see database related issues

What is the difference between Overlay graph and Correlate graph?
Overlay Graph: It overlay the content of two graphs that shares a common x-axis. Left Y-axis on the merged graph show’s the current graph’s value & Right Y-axis show the value of Y-axis of the graph that was merged. Correlate Graph: Plot the Y-axis of two graphs against each other. The active graph’s Y-axis becomes X-axis of merged graph. Y-axis of the graph that was merged becomes merged graph’s Y-axis.

How did you plan the Load? What are the Criteria?
Load test is planned to decide the number of users, what kind of machines we are going to use and from where they are run. It is based on 2 important documents, Task Distribution Diagram and Transaction profile. Task Distribution Diagram gives us the information on number of users for a particular transaction and the time of the load. The peak usage and off-usage are decided from this Diagram. Transaction profile gives us the information about the transactions name and their priority levels with regard to the scenario we are deciding.

What does vuser_init action contain?
Vuser_init action contains procedures to login to a server.

What does vuser_end action contain?
Vuser_end section contains log off procedures.

What is think time? How do you change the threshold?
Think time is the time that a real user waits between actions. Example: When a user receives data from a server, the user may wait several seconds to review the data before responding. This delay is known as the think time. Changing the Threshold: Threshold level is the level below which the recorded think time will be ignored. The default value is five (5) seconds. We can change the think time threshold in the Recording options of the Vugen.

What is the difference between standard log and extended log?
The standard log sends a subset of functions and messages sent during script execution to a log. The subset depends on the Vuser type Extended log sends a detailed script execution messages to the output log. This is mainly used during debugging when we want information about: Parameter substitution. Data returned by the server. Advanced trace.

Explain the following functions: - lr_debug_message
The lr_debug_message function sends a debug message to the output log when the specified message class is set. lr_output_message - The lr_output_message function sends notifications to the Controller Output window and the Vuser log file. lr_error_message - The lr_error_message function sends an error message to the LoadRunner Output window. lrd_stmt - The lrd_stmt function associates a character string (usually a SQL statement) with a cursor. This function sets a SQL statement to be processed. lrd_fetch - The lrd_fetch function fetches the next row from the result set.

Throughput
If the throughput scales upward as time progresses and the number of Vusers increase, this indicates that the bandwidth is sufficient. If the graph were to remain relatively flat as the number of Vusers increased, it would
be reasonable to conclude that the bandwidth is constraining the volume of
data delivered.

Types of Goals in Goal-Oriented Scenario
Load Runner provides you with five different types of goals in a goal oriented scenario:
The number of concurrent Vusers
The number of hits per second
The number of transactions per second
The number of pages per minute
The transaction response time that you want your scenario

Analysis Scenario (Bottlenecks):
In Running Vuser graph correlated with the response time graph you can see that as the number of Vusers increases, the average response time of the check itinerary transaction very gradually increases. In other words, the average response time steadily increases as the load increases. At 56 Vusers, there is a sudden, sharp increase in the average response time. We say that the test broke the server. That is the mean time before failure (MTBF). The response time clearly began to degrade when there were more than 56 Vusers running simultaneously.

What is correlation? Explain the difference between automatic correlation and manual correlation?
Correlation is used to obtain data which are unique for each run of the script and which are generated by nested queries. Correlation provides the value to avoid errors arising out of duplicate values and also optimizing the code (to avoid nested queries). Automatic correlation is where we set some rules for correlation. It can be application server specific. Here values are replaced by data which are created by these rules. In manual correlation, the value we want to correlate is scanned and create correlation is used to correlate.

Where do you set automatic correlation options?
Automatic correlation from web point of view, can be set in recording options and correlation tab. Here we can enable correlation for the entire script and choose either issue online messages or offline actions, where we can define rules for that correlation. Automatic correlation for database, can be done using show output window and scan for correlation and picking the correlate query tab and choose which query value we want to correlate. If we know the specific value to be correlated, we just do create correlation for the value and specify how the value to be created.

What is a function to capture dynamic values in the web vuser script?
Web_reg_save_param function saves dynamic data information to a parameter.

LOAD RUNNER Interview Questions and Answers

LOAD RUNNER Interview Questions and Answers

What is a rendezvous point?
You insert rendezvous points into Vuser scripts to emulate heavy user load on the server. Rendezvous points instruct Vusers to wait during test execution for multiple Vusers to arrive at a certain point, in order that they may simultaneously perform a task. For example, to emulate peak load on the bank server, you can insert a rendezvous point instructing 100 Vusers to deposit cash into their accounts at the same time.

What is a scenario?
A scenario defines the events that occur during each testing session. For example, a scenario defines and controls the number of users to emulate, the actions to be performed, and the machines on which the virtual users run their emulations.

Explain the recording mode for web Vuser script?
We use VuGen to develop a Vuser script by recording a user performing typical business processes on a client application. VuGen creates the script by recording the activity between the client and the server. For example, in web based applications, VuGen monitors the client end of the database and traces all the requests sent to, and received from, the database server. We use VuGen to: Monitor the communication between the application and the server; Generate the required function calls; and Insert the generated function calls into a Vuser script.

Why do you create parameters?
Parameters are like script variables. They are used to vary input to the server and to emulate real users. Different sets of data are sent to the server each time the script is run. Better simulate the usage model for more accurate testing from the Controller; one script can emulate many different users on the system.

What is correlation? Explain the difference between automatic correlation and manual correlation?
Correlation is used to obtain data which are unique for each run of the script and which are generated by nested queries. Correlation provides the value to avoid errors arising out of duplicate values and also optimizing the code (to avoid nested queries). Automatic correlation is where we set some rules for correlation. It can be application server specific. Here values are replaced by data which are created by these rules. In manual correlation, the value we want to correlate is scanned and create correlation is used to correlate.

How do you find out where correlation is required? Give few examples from your projects? Two ways: First we can scan for correlations, and see the list of values which can be correlated. From this we can pick a value to be correlated. Secondly, we can record two scripts and compare them. We can look up the difference file to see for the values which needed to be correlated. In my project, there was a unique id developed for each customer, it was nothing but Insurance Number, it was generated automatically and it was sequential and this value was unique. I had to correlate this value, in order to avoid errors while running my script. I did using scan for correlation.

Where do you set automatic correlation options?
Automatic correlation from web point of view can be set in recording options and correlation tab. Here we can enable correlation for the entire script and choose either issue online messages or offline actions, where we can define rules for that correlation. Automatic correlation for database can be done using show output window and scan for correlation and picking the correlate query tab and choose which query value we want to correlate. If we know the specific value to be correlated, we just do create correlation for the value and specify how the value to be created.

What is a function to capture dynamic values in the web Vuser script?Web_reg_save_param function saves dynamic data information to a parameter.

When do you disable log in Virtual User Generator, When do you choose standard and extended logs?
Once we debug our script and verify that it is functional, we can enable logging for errors only. When we add a script to a scenario, logging is automatically disabled. Standard Log Option: When you select
Standard log, it creates a standard log of functions and messages sent during script execution to use for debugging. Disable this option for large load testing scenarios. When you copy a script to a scenario, logging is automatically disabled Extended Log Option: Select
extended log to create an extended log, including warnings and other messages. Disable this option for large load testing scenarios. When you copy a script to a scenario, logging is automatically disabled. We can specify which additional information should be added to the extended log using the Extended log options.

How do you debug a LoadRunner script?
VuGen contains two options to help debug Vuser scripts-the Run Step by Step command and breakpoints. The Debug settings in the Options dialog box allow us to determine the extent of the trace to be performed during scenario execution. The debug information is written to the Output window. We can manually set the message class within your script using the lr_set_debug_message function. This is useful if we want to receive debug information about a small section of the script only.

How do you write user defined functions in LR? Give me few functions you wrote in your previous project?
Before we create the User Defined functions we need to create the external
library (DLL) with the function. We add this library to VuGen bin directory. Once the library is added then we assign user defined function as a parameter. The function should have the following format: __declspec (dllexport) char* (char*, char*)Examples of user defined functions are as follows:GetVersion, GetCurrentTime, GetPltform are some of the user defined functions used in my earlier project.

What are the changes you can make in run-time settings?
The Run Time Settings that we make are: a) Pacing - It has iteration count. b) Log - Under this we have Disable Logging Standard Log and c) Extended Think Time - In think time we have two options like Ignore think time and Replay think time. d) General - Under general tab we can set the vusers as process or as multithreading and whether each step as a transaction.

Where do you set Iteration for Vuser testing?
We set Iterations in the Run Time Settings of the VuGen. The navigation for this is Run time settings, Pacing tab, set number of iterations.

How do you perform functional testing under load?
Functionality under load can be tested by running several Vusers concurrently. By increasing the amount of Vusers, we can determine how much load the server can sustain.

What is Ramp up? How do you set this?
This option is used to gradually increase the amount of Vusers/load on the server. An initial value is set and a value to wait between intervals can be specified. To set Ramp Up, go to ‘Scenario Scheduling Options’

What is the advantage of running the Vuser as thread?
VuGen provides the facility to use multithreading. This enables more Vusers to be run per generator. If the Vuser is run as a process, the same driver program is loaded into memory for each Vuser, thus taking up a large amount of memory. This limits the number of Vusers that can be run on a single generator. If the Vuser is run as a thread, only one instance of the driver program is loaded into memory for the given number of Vusers (say 100). Each thread shares the memory of the parent driver program, thus enabling more Vusers to be run per generator.

If you want to stop the execution of your script on error, how do you do that?
The lr_abort function aborts the execution of a Vuser script. It instructs the Vuser to stop executing the Actions section, execute the vuser_end section and end the execution. This function is useful when you need to manually abort a script execution as a result of a specific error condition. When you end a script using this function, the Vuser is assigned the status "Stopped". For this to take effect, we have to first uncheck the “Continue on error” option in Run-Time Settings.

What is the relation between Response Time and Throughput?
The Throughput graph shows the amount of data in bytes that the Vusers received from the server in a second. When we compare this with the transaction response time, we will notice that as throughput decreased, the response time also decreased. Similarly, the peak throughput and highest response time would occur approximately at the same time

LOAD RUNNER Interview Questions and Answers

LOAD RUNNER Interview Questions and Answers

  1. What is load testing? - Load testing is to test that if the application works fine with the loads that result from large number of simultaneous users, transactions and to determine weather it can handle peak usage periods.
  2. What is Performance testing? - Timing for both read and update transactions should be gathered to determine whether system functions are being performed in an acceptable timeframe. This should be done standalone and then in a multi user environment to determine the effect of multiple transactions on the timing of a single transaction.
  3. Did u use LoadRunner? What version? - Yes. Version 7.2.
  4. Explain the Load testing process? -
    Step 1: Planning the test. Here, we develop a clearly defined test plan to ensure the test scenarios we develop will accomplish load-testing objectives. Step 2: Creating Vusers. Here, we create Vuser scripts that contain tasks performed by each Vuser, tasks performed by Vusers as a whole, and tasks measured as transactions. Step 3: Creating the scenario. A scenario describes the events that occur during a testing session. It includes a list of machines, scripts, and Vusers that run during the scenario. We create scenarios using LoadRunner Controller. We can create manual scenarios as well as goal-oriented scenarios. In manual scenarios, we define the number of Vusers, the load generator machines, and percentage of Vusers to be assigned to each script. For web tests, we may create a goal-oriented scenario where we define the goal that our test has to achieve. LoadRunner automatically builds a scenario for us. Step 4: Running the scenario.
    We emulate load on the server by instructing multiple Vusers to perform tasks simultaneously. Before the testing, we set the scenario configuration and scheduling. We can run the entire scenario, Vuser groups, or individual Vusers. Step 5: Monitoring the scenario.
    We monitor scenario execution using the LoadRunner online runtime, transaction, system resource, Web resource, Web server resource, Web application server resource, database server resource, network delay, streaming media resource, firewall server resource, ERP server resource, and Java performance monitors. Step 6: Analyzing test results. During scenario execution, LoadRunner records the performance of the application under different loads. We use LoadRunner’s graphs and reports to analyze the application’s performance.
  5. When do you do load and performance Testing? - We perform load testing once we are done with interface (GUI) testing. Modern system architectures are large and complex. Whereas single user testing primarily on functionality and user interface of a system component, application testing focuses on performance and reliability of an entire system. For example, a typical application-testing scenario might depict 1000 users logging in simultaneously to a system. This gives rise to issues such as what is the response time of the system, does it crash, will it go with different software applications and platforms, can it hold so many hundreds and thousands of users, etc. This is when we set do load and performance testing.
  6. What are the components of LoadRunner? - The components of LoadRunner are The Virtual User Generator, Controller, and the Agent process, LoadRunner Analysis and Monitoring, LoadRunner Books Online.
  7. What Component of LoadRunner would you use to record a Script? - The Virtual User Generator (VuGen) component is used to record a script. It enables you to develop Vuser scripts for a variety of application types and communication protocols.
  8. What Component of LoadRunner would you use to play Back the script in multi user mode? - The Controller component is used to playback the script in multi-user mode. This is done during a scenario run where a vuser script is executed by a number of vusers in a group.
  9. What is a rendezvous point? - You insert rendezvous points into Vuser scripts to emulate heavy user load on the server. Rendezvous points instruct Vusers to wait during test execution for multiple Vusers to arrive at a certain point, in order that they may simultaneously perform a task. For example, to emulate peak load on the bank server, you can insert a rendezvous point instructing 100 Vusers to deposit cash into their accounts at the same time.
  10. What is a scenario? - A scenario defines the events that occur during each testing session. For example, a scenario defines and controls the number of users to emulate, the actions to be performed, and the machines on which the virtual users run their emulations.
  11. Explain the recording mode for web Vuser script? - We use VuGen to develop a Vuser script by recording a user performing typical business processes on a client application. VuGen creates the script by recording the activity between the client and the server. For example, in web based applications, VuGen monitors the client end of the database and traces all the requests sent to, and received from, the database server. We use VuGen to: Monitor the communication between the application and the server; Generate the required function calls; and Insert the generated function calls into a Vuser script.
  12. Why do you create parameters? - Parameters are like script variables. They are used to vary input to the server and to emulate real users. Different sets of data are sent to the server each time the script is run. Better simulate the usage model for more accurate testing from the Controller; one script can emulate many different users on the system.
  13. What is correlation? Explain the difference between automatic correlation and manual correlation? - Correlation is used to obtain data which are unique for each run of the script and which are generated by nested queries. Correlation provides the value to avoid errors arising out of duplicate values and also optimizing the code (to avoid nested queries). Automatic correlation is where we set some rules for correlation. It can be application server specific. Here values are replaced by data which are created by these rules. In manual correlation, the value we want to correlate is scanned and create correlation is used to correlate.
  14. How do you find out where correlation is required? Give few examples from your projects? - Two ways: First we can scan for correlations, and see the list of values which can be correlated. From this we can pick a value to be correlated. Secondly, we can record two scripts and compare them. We can look up the difference file to see for the values which needed to be correlated. In my project, there was a unique id developed for each customer, it was nothing but Insurance Number, it was generated automatically and it was sequential and this value was unique. I had to correlate this value, in order to avoid errors while running my script. I did using scan for correlation.
  15. Where do you set automatic correlation options? - Automatic correlation from web point of view can be set in recording options and correlation tab. Here we can enable correlation for the entire script and choose either issue online messages or offline actions, where we can define rules for that correlation. Automatic correlation for database can be done using show output window and scan for correlation and picking the correlate query tab and choose which query value we want to correlate. If we know the specific value to be correlated, we just do create correlation for the value and specify how the value to be created.
  16. What is a function to capture dynamic values in the web Vuser script? - Web_reg_save_param function saves dynamic data information to a parameter.
  17. When do you disable log in Virtual User Generator, When do you choose standard and extended logs? - Once we debug our script and verify that it is functional, we can enable logging for errors only. When we add a script to a scenario, logging is automatically disabled. Standard Log Option: When you select
    Standard log, it creates a standard log of functions and messages sent during script execution to use for debugging. Disable this option for large load testing scenarios. When you copy a script to a scenario, logging is automatically disabled Extended Log Option: Select
    extended log to create an extended log, including warnings and other messages. Disable this option for large load testing scenarios. When you copy a script to a scenario, logging is automatically disabled. We can specify which additional information should be added to the extended log using the Extended log options.
  18. How do you debug a LoadRunner script? - VuGen contains two options to help debug Vuser scripts-the Run Step by Step command and breakpoints. The Debug settings in the Options dialog box allow us to determine the extent of the trace to be performed during scenario execution. The debug information is written to the Output window. We can manually set the message class within your script using the lr_set_debug_message function. This is useful if we want to receive debug information about a small section of the script only.
  19. How do you write user defined functions in LR? Give me few functions you wrote in your previous project? - Before we create the User Defined functions we need to create the external
    library (DLL) with the function. We add this library to VuGen bin directory. Once the library is added then we assign user defined function as a parameter. The function should have the following format: __declspec (dllexport) char* (char*, char*)Examples of user defined functions are as follows:GetVersion, GetCurrentTime, GetPltform are some of the user defined functions used in my earlier project.
  20. What are the changes you can make in run-time settings? - The Run Time Settings that we make are: a) Pacing - It has iteration count. b) Log - Under this we have Disable Logging Standard Log and c) Extended Think Time - In think time we have two options like Ignore think time and Replay think time. d) General - Under general tab we can set the vusers as process or as multithreading and whether each step as a transaction.
  21. Where do you set Iteration for Vuser testing? - We set Iterations in the Run Time Settings of the VuGen. The navigation for this is Run time settings, Pacing tab, set number of iterations.
  22. How do you perform functional testing under load? - Functionality under load can be tested by running several Vusers concurrently. By increasing the amount of Vusers, we can determine how much load the server can sustain.
  23. What is Ramp up? How do you set this? - This option is used to gradually increase the amount of Vusers/load on the server. An initial value is set and a value to wait between intervals can be
    specified. To set Ramp Up, go to ‘Scenario Scheduling Options’
  24. What is the advantage of running the Vuser as thread? - VuGen provides the facility to use multithreading. This enables more Vusers to be run per
    generator. If the Vuser is run as a process, the same driver program is loaded into memory for each Vuser, thus taking up a large amount of memory. This limits the number of Vusers that can be run on a single
    generator. If the Vuser is run as a thread, only one instance of the driver program is loaded into memory for the given number of
    Vusers (say 100). Each thread shares the memory of the parent driver program, thus enabling more Vusers to be run per generator.
  25. If you want to stop the execution of your script on error, how do you do that? - The lr_abort function aborts the execution of a Vuser script. It instructs the Vuser to stop executing the Actions section, execute the vuser_end section and end the execution. This function is useful when you need to manually abort a script execution as a result of a specific error condition. When you end a script using this function, the Vuser is assigned the status "Stopped". For this to take effect, we have to first uncheck the “Continue on error” option in Run-Time Settings.
  26. What is the relation between Response Time and Throughput? - The Throughput graph shows the amount of data in bytes that the Vusers received from the server in a second. When we compare this with the transaction response time, we will notice that as throughput decreased, the response time also decreased. Similarly, the peak throughput and highest response time would occur approximately at the same time.
  27. Explain the Configuration of your systems? - The configuration of our systems refers to that of the client machines on which we run the Vusers. The configuration of any client machine includes its hardware settings, memory, operating system, software applications, development tools, etc. This system component configuration should match with the overall system configuration that would include the network infrastructure, the web server, the database server, and any other components that go with this larger system so as to achieve the load testing objectives.
  28. How do you identify the performance bottlenecks? - Performance Bottlenecks can be detected by using monitors. These monitors might be application server monitors, web server monitors, database server monitors and network monitors. They help in finding out the troubled area in our scenario which causes increased response time. The measurements made are usually performance response time, throughput, hits/sec, network delay graphs, etc.
  29. If web server, database and Network are all fine where could be the problem? - The problem could be in the system itself or in the application server or in the code written for the application.
  30. How did you find web server related issues? - Using Web resource monitors we can find the performance of web servers. Using these monitors we can analyze throughput on the web server, number of hits per second that
    occurred during scenario, the number of http responses per second, the number of downloaded pages per second.
  31. How did you find database related issues? - By running “Database” monitor and help of “Data Resource Graph” we can find database related issues. E.g. You can specify the resource you want to measure on before running the controller and than you can see database related issues
  32. Explain all the web recording options?
  33. What is the difference between Overlay graph and Correlate graph? - Overlay Graph: It overlay the content of two graphs that shares a common x-axis. Left Y-axis on the merged graph show’s the current graph’s value & Right Y-axis show the value of Y-axis of the graph that was merged. Correlate Graph: Plot the Y-axis of two graphs against each other. The active graph’s Y-axis becomes X-axis of merged graph. Y-axis of the graph that was merged becomes merged graph’s Y-axis.
  34. How did you plan the Load? What are the Criteria? - Load test is planned to decide the number of users, what kind of machines we are going to use and from where they are run. It is based on 2 important documents, Task Distribution Diagram and Transaction profile. Task Distribution Diagram gives us the information on number of users for a particular transaction and the time of the load. The peak usage and off-usage are decided from this Diagram. Transaction profile gives us the information about the transactions name and their priority levels with regard to the scenario we are deciding.
  35. What does vuser_init action contain? - Vuser_init action contains procedures to login to a server.
  36. What does vuser_end action contain? - Vuser_end section contains log off procedures.
  37. What is think time? How do you change the threshold? - Think time is the time that a real user waits between actions. Example: When a user receives data from a server, the user may wait several seconds to review the data before responding. This delay is known as the think time. Changing the Threshold: Threshold level is the level below which the recorded think time will be ignored. The default value is five (5) seconds. We can change the think time threshold in the Recording options of the Vugen.
  38. What is the difference between standard log and extended log? - The standard log sends a subset of functions and messages sent during script execution to a log. The subset depends on the Vuser type Extended log sends a detailed script execution messages to the output log. This is mainly used during debugging when we want information about: Parameter substitution. Data returned by the server. Advanced trace.
  39. Explain the following functions: - lr_debug_message - The lr_debug_message function sends a debug message to the output log when the specified message class is set. lr_output_message - The lr_output_message function sends notifications to the Controller Output window and the Vuser log file. lr_error_message - The lr_error_message function sends an error message to the LoadRunner Output window. lrd_stmt - The lrd_stmt function associates a character string (usually a SQL statement) with a cursor. This function sets a SQL statement to be processed. lrd_fetch - The lrd_fetch function fetches the next row from the result set.
  40. Throughput - If the throughput scales upward as time progresses and the number of Vusers increase, this indicates that the bandwidth is sufficient. If the graph were to remain relatively flat as the number of Vusers increased, it would
    be reasonable to conclude that the bandwidth is constraining the volume of
    data delivered.
  41. Types of Goals in Goal-Oriented Scenario - Load Runner provides you with five different types of goals in a goal oriented scenario:
    • The number of concurrent Vusers
    • The number of hits per second
    • The number of transactions per second
    • The number of pages per minute
    • The transaction response time that you want your scenario
  42. Analysis Scenario (Bottlenecks): In Running Vuser graph correlated with the response time graph you can see that as the number of Vusers increases, the average response time of the check itinerary transaction very gradually increases. In other words, the average response time steadily increases as the load
    increases. At 56 Vusers, there is a sudden, sharp increase in the average response
    time. We say that the test broke the server. That is the mean time before failure (MTBF). The response time clearly began to degrade when there were more than 56 Vusers running simultaneously.
  43. What is correlation? Explain the difference between automatic correlation and manual correlation? - Correlation is used to obtain data which are unique for each run of the script and which are generated by nested queries. Correlation provides the value to avoid errors arising out of duplicate values and also optimizing the code (to avoid nested queries). Automatic correlation is where we set some rules for correlation. It can be application server specific. Here values are replaced by data which are created by these rules. In manual correlation, the value we want to correlate is scanned and create correlation is used to correlate.
  44. Where do you set automatic correlation options? - Automatic correlation from web point of view, can be set in recording options and correlation tab. Here we can enable correlation for the entire script and choose either issue online messages or offline actions, where we can define rules for that correlation. Automatic correlation for database, can be done using show output window and scan for correlation and picking the correlate query tab and choose which query value we want to correlate. If we know the specific value to be correlated, we just do create correlation for the value and specify how the value to be created.
  45. What is a function to capture dynamic values in the web vuser script? - Web_reg_save_param function saves dynamic data information to a parameter.

Interview questions on WinRunner

Interview questions on WinRunner

How you used WinRunner in your project?
Yes, I have been using WinRunner for creating automated scripts for GUI, functional and regression testing of the AUT.

Explain WinRunner testing process?
WinRunner testing process involves six main stages
i. Create GUI Map File so that WinRunner can recognize the GUI objects in the application being tested
ii. Create test scripts by recording, programming, or a combination of both. While recording tests, insert checkpoints where you want to check the response of the application being tested.
iii. Debug Test: run tests in Debug mode to make sure they run smoothly
iv. Run Tests: run tests in Verify mode to test your application.
v. View Results: determines the success or failure of the tests.
vi. Report Defects: If a test run fails due to a defect in the application being tested, you can report information about the defect directly from the Test Results window.

What is contained in the GUI map?
- WinRunner stores information it learns about a window or object in a GUI Map. When WinRunner runs a test, it uses the GUI map to locate objects. It reads an object’s description in the GUI map and then looks for an object with the same properties in the application being tested. Each of these objects in the GUI Map file will be having a logical name and a physical description.

- There are 2 types of GUI Map files.
i. Global GUI Map file: a single GUI Map file for the entire application
ii. GUI Map File per Test: WinRunner automatically creates a GUI Map file for each test created.

How does WinRunner recognize objects on the application?
WinRunner uses the GUI Map file to recognize objects on the application. When WinRunner runs a test, it uses the GUI map to locate objects. It reads an object’s description in the GUI map and then looks for an object with the same properties in the application being tested.

Have you created test scripts and what is contained in the test scripts?
Yes I have created test scripts. It contains the statement in Mercury Interactive’s Test Script Language (TSL). These statements appear as a test script in a test window. You can then enhance your recorded test script, either by typing in additional TSL functions and programming elements or by using WinRunner’s visual programming tool, the Function Generator.

How does WinRunner evaluates test results?
Following each test run, WinRunner displays the results in a report. The report details all the major events that occurred during the run, such as checkpoints, error messages, system messages, or user messages. If mismatches are detected at checkpoints during the test run, you can view the expected results and the actual results from the Test Results window.

Have you performed debugging of the scripts?
Yes, I have performed debugging of scripts. We can debug the script by executing the script in the debug mode. We can also debug script using the Step, Step Into, Step out functionalities provided by the WinRunner.

How do you run your test scripts?
We run tests in Verify mode to test your application. Each time WinRunner encounters a checkpoint in the test script, it compares the current data of the application being tested to the expected data captured earlier. If any mismatches are found, WinRunner captures them as actual results.

winRunner Interview qustions 4

  1. How you used WinRunner in your project? - Yes, I have been using WinRunner for creating automated scripts for GUI, functional and regression testing of the AUT.
  2. Explain WinRunner testing process? - WinRunner testing process involves six main stages
    • Create GUI Map File so that WinRunner can recognize the GUI objects in the application being tested
    • Create test scripts by recording, programming, or a combination of both. While recording tests, insert checkpoints where you want to check the response of the application being tested.
    • Debug Test: run tests in Debug mode to make sure they run smoothly
    • Run Tests: run tests in Verify mode to test your application.
    • View Results: determines the success or failure of the tests.
    • Report Defects: If a test run fails due to a defect in the application being tested, you can report information about the defect directly from the Test Results window.
  3. What is contained in the GUI map? - WinRunner stores information it learns about a window or object in a GUI Map. When WinRunner runs a test, it uses the GUI map to locate objects. It reads an object’s description in the GUI map and then looks for an object with the same properties in the application being tested. Each of these objects in the GUI Map file will be having a logical name and a physical description. There are 2 types of GUI Map files. Global GUI Map file: a single GUI Map file for the entire application. GUI Map File per Test: WinRunner automatically creates a GUI Map file for each test created.
  4. How does WinRunner recognize objects on the application? - WinRunner uses the GUI Map file to recognize objects on the application. When WinRunner runs a test, it uses the GUI map to locate objects. It reads an object’s description in the GUI map and then looks for an object with the same properties in the application being tested.
  5. Have you created test scripts and what is contained in the test scripts? - Yes I have created test scripts. It contains the statement in Mercury Interactive’s Test Script Language (TSL). These statements appear as a test script in a test window. You can then enhance your recorded test script, either by typing in additional TSL functions and programming elements or by using WinRunner’s visual programming tool, the Function Generator.
  6. How does WinRunner evaluate test results? - Following each test run, WinRunner displays the results in a report. The report details all the major events that occurred during the run, such as checkpoints, error messages, system messages, or user messages. If mismatches are detected at checkpoints during the test run, you can view the expected results and the actual results from the Test Results window.
  7. Have you performed debugging of the scripts? - Yes, I have performed debugging of scripts. We can debug the script by executing the script in the debug mode. We can also debug script using the Step, Step Into, Step out functionalities provided by the WinRunner.
  8. How do you run your test scripts? - We run tests in Verify mode to test your application. Each time WinRunner encounters a checkpoint in the test script, it compares the current data of the application being tested to the expected data captured earlier. If any mismatches are found, WinRunner captures them as actual results.
  9. How do you analyze results and report the defects? - Following each test run, WinRunner displays the results in a report. The report details all the major events that occurred during the run, such as checkpoints, error messages, system messages, or user messages. If mismatches are detected at checkpoints during the test run, you can view the expected results and the actual results from the Test Results window. If a test run fails due to a defect in the application being tested, you can report information about the defect directly from the Test Results window. This information is sent via e-mail to the quality assurance manager, who tracks the defect until it is fixed.
  10. What is the use of Test Director software? - TestDirector is Mercury Interactive’s software test management tool. It helps quality assurance personnel plan and organize the testing process. With TestDirector you can create a database of manual and automated tests, build test cycles, run tests, and report and track defects. You can also create reports and graphs to help review the progress of planning tests, running tests, and tracking defects before a software release.
  11. Have you integrated your automated scripts from TestDirector? - When you work with WinRunner, you can choose to save your tests directly to your TestDirector database or while creating a test case in the TestDirector we can specify whether the script in automated or manual. And if it is automated script then TestDirector will build a skeleton for the script that can be later modified into one which could be used to test the AUT.
  12. What are the different modes of recording? - There are two type of recording in WinRunner. Context Sensitive recording records the operations you perform on your application by identifying Graphical User Interface (GUI) objects. Analog recording records keyboard input, mouse clicks, and the precise x- and y-coordinates traveled by the mouse pointer across the screen.
  13. What is the purpose of loading WinRunner Add-Ins? - Add-Ins are used in WinRunner to load functions specific to the particular add-in to the memory. While creating a script only those functions in the add-in selected will be listed in the function generator and while executing the script only those functions in the loaded add-in will be executed else WinRunner will give an error message saying it does not recognize the function.
  14. What are the reasons that WinRunner fails to identify an object on the GUI? - WinRunner fails to identify an object in a GUI due to various reasons. The object is not a standard windows object. If the browser used is not compatible with the WinRunner version, GUI Map Editor will not be able to learn any of the objects displayed in the browser window.
  15. What is meant by the logical name of the object? - An object’s logical name is determined by its class. In most cases, the logical name is the label that appears on an object.
  16. If the object does not have a name then what will be the logical name? - If the object does not have a name then the logical name could be the attached text.
  17. What is the different between GUI map and GUI map files? - The GUI map is actually the sum of one or more GUI map files. There are two modes for organizing GUI map files. Global GUI Map file: a single GUI Map file for the entire application. GUI Map File per Test: WinRunner automatically creates a GUI Map file for each test created.

GUI Map file is a file which contains the windows and the objects learned by the WinRunner with its logical name and their physical description.

  1. How do you view the contents of the GUI map? - GUI Map editor displays the content of a GUI Map. We can invoke GUI Map Editor from the Tools Menu in WinRunner. The GUI Map Editor displays the various GUI Map files created and the windows and objects learned in to them with their logical name and physical description.
  2. When you create GUI map do you record all the objects of specific objects? - If we are learning a window then WinRunner automatically learns all the objects in the window else we will we identifying those object, which are to be learned in a window, since we will be working with only those objects while creating scripts.

Powered by Blogger.